
Perceptron learning of pairwise contact energies for proteins incorporating
the amino acid environment

Muyoung Heo, Suhkmann Kim, Eun-Joung Moon, Mookyung Cheon, Kwanghoon Chung, and Iksoo Chang
National Research Laboratory for Computational Proteomics and Biophysics, Department of Physics, Pusan National University,

Busan 609-735, Korea
�Received 6 February 2004; revised manuscript received 10 May 2005; published 12 July 2005�

Although a coarse-grained description of proteins is a simple and convenient way to attack the protein
folding problem, the construction of a global pairwise energy function which can simultaneously recognize the
native folds of many proteins has resulted in partial success. We have sought the possibility of a systematic
improvement of this pairwise-contact energy function as we extended the parameter space of amino acids,
incorporating local environments of amino acids, beyond a 20�20 matrix. We have studied the pairwise
contact energy functions of 20�20, 60�60, and 180�180 matrices depending on the extent of parameter
space, and compared their effect on the learnability of energy parameters in the context of a gapless threading,
bearing in mind that a 20�20 pairwise contact matrix has been shown to be too simple to recognize the native
folds of many proteins. In this paper, we show that the construction of a global pairwise energy function was
achieved using 1006 training proteins of a homology of less than 30%, which include all representatives of
different protein classes. After parametrizing the local environments of the amino acids into nine categories
depending on three secondary structures and three kinds of hydrophobicity �desolvation�, the 16290 pairwise
contact energies �scores� of the amino acids could be determined by perceptron learning and protein threading.
These could simultaneously recognize all the native folds of the 1006 training proteins. When these energy
parameters were tested on the 382 test proteins of a homology of less than 90%, 370 �96.9%� proteins could
recognize their native folds. We set up a simple thermodynamic framework in the conformational space of
decoys to calculate the unfolded fraction and the specific heat of real proteins. The different thermodynamic
stabilities of E.coli ribonuclease H �RNase H� and its mutants were well described in our calculation, agreeing
with the experiment.
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I. INTRODUCTION

One of the most important problems in bioinformatics,
biophysics, biology, and computer science is the protein fold-
ing problem. Three big issues are the prediction of protein
structure, the design of amino acids sequence, and the under-
standing of the protein folding mechanism �1–12�. The main
difficulty in solving the protein folding problem is the com-
plicated nature of interaction energies between atoms in the
protein. One can, in principle, develop an atomistic energy
function for all atoms in the protein and look for the mini-
mum energy conformations from the first principle. But, this
approach has limited success only for the shorter proteins,
and it requires precise energy functions for the longer pro-
teins and huge computational resources. It is generally ac-
cepted that the amino acid sequence contains the essential
features of proteins and that its native structure corresponds
to that of the minimum free energy �1,9�. Therefore, it is
practically important to develop a protein energy function
which depends on the sequence, the character of amino ac-
ids, and can recognize the native structures of proteins.

The usual approach is to use a coarse-grained picture of
amino acids after integrating out the details of proteins
�1–17�. Each amino acid is considered as an isotropic sphere
centered at the position of the C� atom on the backbone of a
protein, and one considers the interactions between these
points instead of the interactions between all atoms. Since
the details of a protein are coarse-grained, one needs the

appropriate energy function which can recognize the native
folds and capture the essential thermodynamic features of
proteins. There have been many attempts �3,5–7,10–12� to
design and construct such protein energy functions based on
the known structures of proteins in the Protein Data Bank
�PDB� �http://www.rcsb.org/pdb� �17�. The main aim has
been to come up with a global protein energy function, based
on a sequence of 20 amino acids, which can recognize the
native folds of as many proteins as possible, so that one can
proceed to use it for the thermodynamic description of pro-
teins. The first effort was put forward by Miyazawa and
Jernigan �10�, who constructed a 20�20 matrix for the pair-
wise contact energies �scores� of the 20 amino acids using
the quasichemical approximation. Although this pairwise en-
ergy function is simple, it could explain many of the charac-
teristic properties of proteins and has had a great impact on
describing the statistical properties of proteins. There have
been several attempts to modify it to acquire better ability to
recognize more proteins �11,12�. These approaches basically
count the frequencies of pairwise contacts of two amino ac-
ids which are within the threshold distance in the protein
structure.

Zhang and Kim �12�, however, using the quasichemical
approximation, expanded the parameter space of amino acids
by considering the secondary structure in which each amino
acid resides within the protein structure. Each amino acid
can be in one of three secondary structures ��-helix,
�-strand, others�; thus the pairwise contact matrix becomes
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60�60. Their contact matrix recognized the native folds of
more than 97% of the 316 testing proteins whose length was
less than 200 residues, but could not recognize all of them.
Once the set of test proteins used in the statistical counting of
pairwise contacts is given, the values of 1830 independent
parameters are fixed and there is no room to improve them
further to recognize all of the native folds of the test proteins.

In order to construct a protein energy function which can
achieve the complete recognition of all native folds of test
proteins, two optimization schemes for the protein energy
parameters were employed. The basic idea was to optimize
the energy parameters so that the energy of the amino acid
sequence housed in the known native structure was always
lower than in any decoy structures. The Z-score method
maximizes the difference between the native energy and the
average energy of the decoy structures, which may lead to
the maximum stability of the native state against decoys
�3,13�. However, there can be a few decoys whose energies
are always lower than the native energy, even with the maxi-
mum Z-score. Therefore, the maximum Z-score does not al-
ways grant the complete recognition of all native folds si-
multaneously. An alternative approach is the perceptron
learning method of the energy parameters, which optimizes
them in order to achieve the complete recognition of the
native folds of the training proteins simultaneously �5–7,16�.

Whether one can determine the pairwise energy param-
eters using the perceptron learning method, which achieves
the complete recognition of the native folds of training pro-
teins, is always an important and a difficult question.
Domany et al. �4,5� showed that the possibility of success-
fully constructing such a pairwise contact energy function
depends on the competing conformations against a native
one and on the parametrization scheme of energy parameters
for amino acids. As long as one adopts a 20�20 pairwise
contact matrix in which the local environmental features of
amino acids in protein structures are not considered, the an-
swer depends on whether one obtains the competing decoys
from a gapless threading or from competitive conformations
by energy minimization. With decoys from a gapless thread-
ing, one can simultaneously recognize the native folds for a
typical subset of roughly 100 proteins at most, above which
there is no set of pairwise contact parameters. With decoys
from competitive low-energy conformations, it was shown
that it was not possible to construct a 20�20 pairwise con-
tact matrix to recognize the native fold of a protein. This
demonstrates that a simple parametrization for an energy
function, such as a 20�20 pairwise contact matrix, does not
recognize the native folds of proteins �5,6� since it is too
crude a method to catch the structural and the energetic char-
acters of amino acids in protein structures. However, they
made an important suggestion that the inclusion of a hydro-
phobicity �desolvation� and a local structural feature can be a
possible direction to explore in constructing the global pro-
tein energy function �5�.

Within the context of employing decoys from a gapless
threading, we have sought the possibility of a systematic
improvement of the pairwise contact energy function as we
extended the parameter space of amino acids, incorporating
local environments of amino acids, beyond a 20�20 matrix.
We have studied the pairwise contact energy functions of

20�20 ��20
20�, 60�60 ��60

60�, and 180�180 ��180
180� matrices

depending on the extent of parameter space, and compared
their effect on the learnability of energy parameters in the
context of a gapless threading, bearing in mind that a 20
�20 pairwise contact matrix was shown to be too simple to
recognize the native folds of proteins. In this paper, we show
that the construction of a global pairwise energy function
was achieved using 1006 training proteins �Ptrain

1006� of a ho-
mology of less than 30% which include all the representa-
tives of different protein classes. After parametrizing the lo-
cal environments of amino acids into nine categories
depending on three secondary structures and three kinds of
hydrophobicity of amino acids, the �180

180 matrix could be de-
termined by perceptron learning and protein threading. These
could simultaneously recognize all the native folds of Ptrain

1006.
When these parameters were tested on a separate set of 382
test proteins �Ptest

382� with high homology, 370 �96.9%� pro-
teins could recognize their native folds. We set up a simple
thermodynamic framework in the conformational space of
decoys to calculate the unfolded fraction and the specific
heat of real proteins. The different thermodynamic stabilities
of E.coli RNase H and its mutants were well described in our
calculation, agreeing well with the experiment �23�.

In Sec. II, the energy function, the protein data set, and
the classification of the local environments of amino acids
are introduced. In Sec. III the perceptron learning of energy
parameters, and in Sec. IV the threading test of our energy
parameters and discussions on their quality are presented. In
Sec. V, the thermodynamic stabilities of E.coli RNase H and
its mutants are evaluated. Conclusions and the possible ap-
plications of this work are summarized in Sec. VI.

II. ENERGY FUNCTION, PROTEIN DATA SET, AND
LOCAL ENVIRONMENTS OF AMINO ACIDS

Given a sequence of amino acids, we needed an energy
function which could assess the fit of a sequence to the na-
tive structure or decoy structures. We employed the coarse-
grained representation of amino acids and their local envi-
ronmental information. One may construct a simple energy
function according to the propensities of pairwise interac-
tions of amino acids in the different local environments. The
basic strategy is to optimize these propensities so that the
energy of a sequence in the native structure is always lower
than in the competing decoy structures. This criterion should
also apply to the set of many proteins simultaneously. The
energy function we used is the following:

H�s,�� = �
i,j

�
k,l

n�i, j ;k,l���i, j ;k,l� , �1�

where H is the energy function which is a measure of how
well a sequence s is housed in a structure �. The elements in
the sum are the environment-dependent pairwise contact en-
ergies between two amino acids where n�i , j ;k , l� is the num-
ber of pairs of two amino acids of type i , j found in the local
environment k , l, respectively, making the pairwise contacts
within a threshold distance 6.5 Å, and ��i , j ;k , l� is the en-
ergy associated with it. We considered the pairs of amino
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acids only when two amino acids are separated by more than
a three-peptide-bond unit along the backbone of a protein.
Once the structures of proteins are given, n�i , j ;k , l� are de-
termined from the PDBs. Our aim is to extract the energy
parameters ��i , j ;k , l� in the �180

180 matrix to ensure the recog-
nition of the native folds with the maximum stability among
a set of decoy structures. Since this matrix is symmetric, the
number of independent parameters is 16 290.

We chose Ptrain
1006 from PDB select �http://

www.cmbi.kun.nl/gv/pdbsel� and WhatIf �http://
www.cmbi.kun.nl/whatif� �17�. In fact, there are 3032 repre-
sentative proteins of a homology of less than 30% in PDB
select and WhatIf, covering all of the different classes ac-
cording to the structural classification of proteins �SCOP�
�18�. The definition of “X% homology” for a set of proteins
is that the proteins in such a set have a sequence similarity of
less than X% between proteins. Therefore, X% is a cutoff
�maximum� similarity between protein sequences. We used a
representative list of PDB at the web site of PDB select and
of WhatIf �17�. There, the sequence similarity was set up by
an all-against-all Smith/Waterman sequence alignment algo-
rithm between proteins. Local alignment searches for regions
of local similarity between two sequences �of different
length, for example� were conducted, and the entire length of
the sequences did not need to be included. Therefore, local
alignment methods were used to find matches between small
regions of sequences between two proteins. Among these
3032 proteins, we selected those �1� whose structures were
obtained by x-ray crystallography, �2� which do not have
nonstandard amino acids, �3� which are not disconnected
chains, and �4� which are not mutant structures. As a result,
we had a training set of 1006 nonredundant proteins, whose
length ranged from 53 to 994 amino acids.

We classified the local environments of the amino acids of
a sequence in the protein structure into nine categories. Each
amino acid can be found in one of three secondary structures
��-helix, �-strand, other�. The PDB file for each protein in
our study includes information about the assignment of the
secondary structures of amino acids in the protein structure.
We followed a HELIX/SHEET record inside a PDB file for
amino acids that was assigned by the experimentalists. Un-
less otherwise assigned specifically by this list, the secondary
structures of amino acids were assigned to “other,” that is, to
“loop” structure. The solvent-exposed ratio of amino acid
was calculated using Richards’ algorithm �19,20� as the ratio
between the solvent accessible area of each amino acid,
X, in its native structure and the corresponding area in the
Gly-X-Gly extended structure. The values of the solvent ex-
posed ratios �10%, 10–50 %, and �50%, capturing the de-
gree of hydrophobicity, were classified into the three classes
of small, medium, and large exposure, respectively. Once
this environmental classification of amino acids was com-
pleted, the 3D structural information of a sequence was
transformed into the 1D string of local environmental param-
eters. Therefore, the energy function in Eq. �1� provides a
quantitative measure of the propensities of the pairwise con-
tacts of two amino acids within their corresponding local
environments.

III. PERCEPTRON LEARNING OF ENERGY
PARAMETERS

We first generated decoys of each protein by a gapless
threading of Ptrain

1006 on themselves. The sequence of each tar-
get protein was threaded on the structures �environments� �
of all proteins of Ptrain

1006 with a length equal to or longer than
a target protein. The solvent-accessible area of amino acids
mounted on a threaded fragment was approximated to be the
same as that in the longer protein from which the fragment
was taken. The total number of decoys for Ptrain

1006 was about
78.2 million, and each decoy had to satisfy the following
inequality to recognize the native folds of Ptrain

1006 �5–7,16,21�:

�
i,j=1

20

�
k,l=1

9

�n�i, j ;k,l�D − n�i, j ;k,l����i, j ;k,l� � 0, �2�

where n�i , j ;k , l�D and n�i , j ;k , l� are the occurrences
of a pairwise contact �i , j ;k , l� in decoy
D �=1,2 , . . . ,78.2 million� and in its native structure, respec-
tively. Our aim is to determine and to optimize the 16 290
parameters of ��i , j ;k , l� to ensure that Ptrain

1006 of known native
structure have lower energies than when their sequences are
housed in the decoy structures.

The general strategy to obtain the solution ��
����i , j ;k , l�� is to determine the values of ��i , j ;k , l� which
satisfy Eq. �2� simultaneously for D=1,2 , . . . ,
78.2 million in the 16 290-dimensional space of parameters,

�
i,j=1

20

�
k,l=1

9

�n�i, j ;k,l�D − n�i, j ;k,l����i, j ;k,l� = n�D · �� � 0.

�3�

Here, n�D= �n�i , j ;k , l�D−n�i , j ;k , l�� is fixed once the set of
Ptrain

1006 is known, and �� is the unknown vector to be deter-
mined. We started from an initial value of �o�i , j ;k , l� and
calculated the scalar product n�D on �� for all 78.2 million
inequalities. The vectors n�D whose gap n�D ·�� is negative are
the ones which do not satisfy the above inequality and the
corresponding decoys are deemed to be the failed decoys.
We selected the worst vector n�w among the failed decoys,
which had the lowest value of energy gap, and updated
�� t+1=�� t+�n�w / 	�� t+�n�w	 �0���1� so that the energy gap for
the worst decoy w increased. The 78.2 million scalar prod-
ucts were calculated again with the new �� t+1, and the set of
failed decoys and the worst decoy were identified in order to
update �� t+1 again. This procedure was iterated until the num-
ber of failed decoys out of 78.2 million decoys became zero.
The main purpose of this update is to find �� , which can
stabilize the energies of the native states against the energies
of the decoy structures so that the native states can be fully
recognized. If a solution for Eq. �2� exists, namely that �� final
satisfies all 78.2 million inequalities, the vector �� final con-
verges to a region of points in the 16 290-dimensional space
and the energy gap of the worst decoy n�w ·�� final becomes a
positive finite within a finite number of iterations. If the it-
eration runs forever, neither providing a converging value of
�� nor a positive finite value for the energy gap, the percep-
tron learning does not work, which means that the parametri-
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zation in the energy function �Eq. �1�� is not adequate. But it
is also impractical to solve all 78.2 million inequalities si-
multaneously.

The basic ingredient for determining the optimal
��i , j ;k , l�, instead of solving all 78.2 million inequalities, is
the following. Given that for each training protein there are
many decoys generated from a protein threading, we im-
posed the condition that the native energy of a given protein
must be lower than both �1� the average energy of a random
sequence on its own native structure with the same compo-
sition of amino acids �21�, and �2� the average energy of the
sequence on the decoy structures. The former generated 1006
inequalities, and the latter, 1005. We first solved these 2011
inequalities by perceptron learning, the solution of which
guides the approximate direction of the ultimate solution
��i , j ;k , l� in 16 290-dimensional parameter space. Using
these learned ��i , j ;k , l�, we performed a threading test to
compare the energies of all 78.2 million decoys with their
native state energies. The number of failed decoys whose
energies are lower than their native state energies is 712 out
of 78.2 million.

The inequalities from the failed decoys were added to the
previous 2011 inequalities, and for all, perceptron learning,
taking the �learned� ��i , j ;k , l� as the initial condition, was
performed again to find the new solution for ��i , j ;k , l�. We
tried to achieve the maximum stability of native state against
the competing decoys by maximizing the energy gap be-
tween the native energies of Ptrain

1006 and their failed decoys.
Then, a second threading test of Ptrain

1006 with the new
��i , j ;k , l� produced a new set of failed decoys to add to the
previous set of inequalities. We iterated the procedures of �i�
perceptron learning for updating energy parameters and �ii�
protein threading, adding new inequalities until the number
of failed decoys to add became zero �5–7,16,21�. When this
was achieved, the total number of inequalities to solve was
2755.

Although the solution ��i , j ;k , l� for solving the 2755 in-
equalities satisfied all of the 78.2 million inequalities, it was
neither unique nor optimized. The optimization strategy is to
push the energies of competing decoys as far away as pos-
sible from the native state energy so that the maximum sta-
bilities of the native states of Ptrain

1006 are achieved. For this
purpose, we identified the competing decoys �among all 78.2
million decoys� whose energy gaps from their native state
energy were smaller than the minimum gap of the 2755 de-

coys. Again we added the inequalities for these competing
decoys to the previous 2755 inequalities, and thereby learned
the optimized solution ��i , j ;k , l� �5,16�. We also iterated the
procedures of perceptron learning and protein threading until
the number of competing decoys �among all 78.2 million
decoys� whose energy gap was smaller than the minimum
gap of the previous inequalities became zero, which resulted
in solving just 3903 inequalities. We could optimize 16 290
pairwise contact energy parameters simultaneously, which
recognized 100% of the native states of Ptrain

1006 �22�.

IV. THREADING TEST OF PAIRWISE ENERGY
PARAMETERS AND THEIR QUALITY

A. How well does the energy function recognize native folds?

After we succeeded in learning the pairwise energy pa-
rameters, we checked the capability of our parameters to
recognize the native folds of proteins that were not present in
our learning set. We chose Ptest

382 that were distinct from Ptrain
1006.

These 382 proteins have an average homology of 34% with a
maximum of 90% among them. The reason we chose these
highly homologous proteins for the threading test was to
generate highly competitive decoys from threading Ptest

382 on
themselves so that it would be hard to distinguish a native
energy from the decoys’ energies. We tried to impose diffi-
cult conditions on the threading test. Nevertheless, the
threading test of Ptest

382 on themselves using the determined
energy parameters showed that the native folds of 370
�96.9%� proteins could be recognized, and there were only
159 failed decoys out of the total of 12.1 million decoys.
Table I lists 12 failed proteins, and the number of failed
decoys for each protein was within the lowest 0.1% of the
total number of decoys. For the further test of the capability
for our energy parameters to recognize the native folds of
test proteins, we also constructed decoys for test proteins by
threading them not only within the set of test proteins but
also onto the proteins in the training set or in the whole set
since the more decoys, the better the threading test. Thread-
ing Ptest

382 onto Ptrain
1006 �Pwhole

1388 � generated 28.5 �40.6� million
decoys, and the native folds of 366 �95.8%� �365 �95.5%��
proteins could be recognized with 415 �574� failed decoys,
respectively, using the determined energy parameters. In
view of the fact that we chose Ptest

382 of a homology of less
than 90% in order to perform a stringent threading test, the
success ratio of more than 95% is a very good one. We

TABLE I. The list of 12 failed proteins out of 382 test proteins. The number of failed decoys �Nfd� is
within the lowest 0.1% of the total number of decoys �Ntd� for each protein, showing that the native folds are
almost recognized even for the failed proteins. NAA is the length of each protein.

PDB NAA Ntd Nfd PDB NAA Ntd Nfd

1FYN 62 77160 5 1MHO 88 67522 2

1BWO 90 66795 3 1HRO 105 61461 75

1RDS 105 61461 2 1CO6 107 60764 2

1HE7 107 60764 4 1JSG 111 59402 10

1G96 111 59402 5 1H6W 151 47251 43

1IHK 157 45603 7 1MUP 157 45603 1
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classified the Ptest
382 according to their SCOP classification, as

�, �, � /�, and �+� classes. We checked whether our pair-
wise energy parameters could provide a uniform success ra-
tio of more than 90% for the different classes in the thread-
ing test. Table II shows such a success ratio for the proteins
belonging to each class when they are subject to the thread-
ing test on Ptest

382.
Taking the energy parameters at the stage immediately

after applying the inequalities of �1� native energy lower than
average energy for random sequence and �2� native energy
lower than average decoy energy to Ptrain

1006 as mentioned in
Sec. III, and threading Ptrain

1006 on themselves, only 712 out of
78.2 million decoys failed. This is lower than the ratio of
failed decoys in the test set �159 out of 12.1 million�. There-
fore, one might wonder whether the introduction of the in-
equalities for individual decoys actually improve the results
for the test set at all, or if this is just an overfitting. Threading
Ptest

382 on themselves using the same intermediate energy pa-
rameters, the number of failed decoys was 3403 out of 12.1
million and 352 �92.1%� native folds of the 382 proteins
could be recognized. However, when we included the in-
equalities for individual decoys for learning the energy pa-
rameters after procedures �1� and �2�, the learned 16 290 pa-
rameters could recognize all the native folds of Ptrain

1006 and 370
�96.9%� native folds of Ptest

382, and the number of failed decoys
was 159 out of 12.1 million decoys. Thus, the introduction of
inequalities for individual decoys indeed improved the re-
sults of native folds recognition for the test set and decreased
the number of failed decoys.

Since we took an approximation to take the solvent acces-
sible area of amino acid mounted on a threaded fragment to
be the same as that in the longer protein, one might worry
that the decoy structures were less compact than the native
structures, which might have resulted in the easy determina-
tion of our energy function. In order to show that our decoy
set is sufficient and illustrate the quality of our energy func-
tion for the recognition of native folds, we tested our energy
function against the nativelike decoys. Therefore, we also
tested the quality of our 16 290 pairwise-contact parameters
against Levitt’s decoy database at http://dd.stanford.edu.
Table III shows the results of the threading test for recogniz-
ing 15 proteins against Levitt’s decoys generated by �a� a
lattice-ssfit algorithm and �b� a four-state-reduced algorithm.
When we used our energy parameters extracted from Ptrain

1006,
Table III�a� shows the number of failed decoys whose ener-
gies were less than the energy of a native state. Eight pro-
teins out of 15 could recognize their native folds, and the
number of failed decoys for the remaining seven proteins
were, at most, within the lowest 3.5% of the corresponding

total numbers of decoys. We noticed that 1BEO and 1R69
were already included in our set of Ptrain

1006. However, our en-
ergy parameters, constructed using decoys from the gapless
threading of Ptrain

1006, could successfully recognize the native
folds of 1BEO and 1R69 against the nativelike decoys gen-
erated by Levitt. It was useful to construct again 16 290 new
energy parameters from the gapless threading of Ptrain

1006 to-
gether with 15 Levitt’s proteins, and to check how well the
native folds of the 15 proteins were recognized against Lev-
itt’s nativelike decoys. Table III�b� shows that new energy
parameters could recognize the native folds of 12 proteins
completely and of three proteins almost completely. Our en-
ergy function could also recognize 22 native folds out of 24
single-chain target proteins from CASP4 and CASP5 com-
petition �Critical Assessment of Techniques for Protein
Structure Prediction� �http://predictioncenter.llnl.gov/�. For
each target protein, we chose the 20 best predicted structures
provided by the participants of CASP4 and CASP5, among
which the one with the lowest energy as determined by our
energy function could pass a threading test on Ptrain

1006. These
tests convincingly illustrated the quality of our energy func-
tion for native folds recognition.

B. Comparision to other energy functions and approaches

We also constructed two kinds of �60
60 pairwise contact

matrices considering either the secondary structure or the
hydrophobicity of amino acids using perceptron learning and
protein threading. Both of these could simultaneously recog-
nize the native folds of all the native states of Ptrain

1006. When
these two energy functions were subject to a threading test
on Ptest

382, the energy function with the secondary structure
information could recognize the native folds of 300 �78.5%�
proteins out of Ptrain

1006, whereas 367 �96%� proteins were rec-
ognized by the energy function with the hydrophobicity in-
formation. This illustrated the better role played by the hy-
drophobicity of amino acids in recognizing the native
structures of proteins. Both the hydrophobicity and the sec-
ondary structure are important in assessing the protein struc-
ture, and the impact of hydrophobicity is elucidated in this
calculation through the process of designing global pairwise
contact energies for proteins. We repeated the same calcula-
tion of perceptron learning for the �20

20 matrix, and we were
not able to determine a function which could recognize the
native folds of Ptrain

1006 simultaneously. This is in accord with
the previous finding �5,6� that it is not possible to param-
etrize a simple function, such as �20

20 matrix, to recognize the
native folds of proteins even with a gapless threading. Our

TABLE II. The success ratios for the proteins �from a set of 382 test proteins� belonging to �, �, � /�, and
�+� classes when subject to the threading test. It shows a uniform success ratio of more than 90% for the
different classes of proteins.

� � � /� �+� total

The number of proteins 87 101 122 72 382

The number of failed proteins 4 6 0 2 12

Success ratio �%� 95.4 94.1 100 97.2 96.9
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work, however, illustrated that �60
60 and �180

180 matrices incor-
porating the local environments of amino acids are learnable
and can recognize the native folds of Ptrain

1006 simultaneously.
And it showed the important role played by the secondary
structures and the hydrophobicity of amino acids in recog-
nizing the native folds of proteins even in the context of
employing competing conformations by a gapless threading.
It would be worthwhile to construct the 60�60 or the 180
�180 pairwise contact energy parameters, especially with
respect to the nativelike decoys of true low energies, recog-
nizing the native folds of the 1006 training proteins simulta-
neously, although this was not feasible for the 20�20 pair-
wise contact energy parameters �5,6�.

Bowie et al. �13� constructed a scoring profile by a statis-
tical counting of amino acids found in different local envi-
ronments for converting the three-dimensional structural in-
formation of proteins to a one-dimensional string of local
environments of amino acids. They classified the local envi-
ronments of amino acids according to 18 classes with the
total 20�18=360 parameters. Their aim was to determine
the favorable alignment of a protein sequence to the environ-
mental string of a protein whose 3D structure was already
known. They demonstrated that a 3D-1D structural profile
could detect amino acid sequences compatible with a known
3D structure of a protein, using the Z-score method, for four
families of proteins: the globins, cyclic AMP receptor pro-
teins, ribose binding proteins, and the actins. Wilmanns and
Eisenberg �14� presented other modified pair-preference 3D
profiles �type II: 210�8 matrix; type III: 80�9 matrix; type
IV: 80�9 matrix� that characterize the local environments
according to the statistical preferences of the profiled residue
for neighbors of specific residue types, main-chain confor-

mations, or secondary structure. They combined the original
and three pair-preference 3D-profile methods for the identi-
fication of a sequence of � /� barrel proteins and showed that
these combined profiles enhance the assignment of se-
quences to known 3D structures. However, they used too few
proteins to construct good scoring profiles, since the quality
of these statistical approaches depends on a 3D-structure da-
tabase. In this paper, we introduced nine local environments
of amino acids leading to 9�20=180 possible residue/
environment assignments, but then constructed an �180

180 en-
ergy function, which was similar to the scoring profiles men-
tioned above. The purpose of our energy parameters,
constructed from 1006 training proteins, was the recognition
of the native structure of a protein against conformational
decoys by protein threading for a given sequence of amino
acids, whereas that of the score profiles by the Eisenberg
group was to detect amino acid sequences compatible with a
known 3D structure of a protein. Therefore, the perfor-
mances of these two approaches are not subject to a direct
comparison. Within the context of our work, we could, how-
ever, construct the scoring profiles for the 180 one-body pa-
rameters and the 16 290 pairwise contact parameters adopt-
ing the same definition used by the Eisenberg group �13�,
that of a statistical counting of the occurrence of amino acids
being in different local environments. And then, we com-
pared the success ratios of recognizing native folds of Ptrain

1006

in the threading test when using these two kinds of energy
parameters. The 627 �62.4%� �968 �96.3%�� native folds out
of the 1006 training proteins were recognized by the 180
one-body �16 290 pairwise contact� energy parameters. Al-
though the ratio between the numbers of energy parameters
does not directly reflect better or poor performance of recog-

TABLE III. The results of the threading test for 15 proteins against Levitt’s decoys at http://
dd.stanford.edu. NAA is the number of amino acids, Nd is the number of decoys, and Nfd is the number of
failed decoys for each protein from a threading test, against Levitt’s difficult decoys, using the energy
parameters obtained by perceptron learning and the gapless threading of �a� 1006 proteins and �b� 1006
proteins together with Levitt’s 15 proteins.

Algorithm for
generating decoys PDB NAA Nd

Nfd

�a� �b�

Lattice�ssfit
algorithm

1BEO 98 2000 0 0

1CTF 68 2000 0 0

1FCA 55 2000 33 0

1NKL 78 2000 0 0

1PGB 56 2000 0 0

1TRL 62 2000 2 0

1DKT 72 2000 0 0

4ICB 76 2000 0 0

Four-state�reduced
algorithm

1CTF 68 631 1 0

1R69 63 676 0 0

1SN3 65 661 5 2

2CRO 65 675 24 4

3ICB 75 654 4 3

4PTI 58 688 0 0

4RXN 54 678 1 0
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nizing native folds, our test showed a systematic improve-
ment of the performance of the energy function as we ex-
tended the parameter space of energy parameters from the
20�9 one-body matrix to the 180�180 pairwise contact
matrix.

C. Characterization of energy function

In order to study the physiochemical characteristics of the
amino acids extracted from the 16 290 energy parameters,
we performed an eigenvector analysis of an �180

180 symmetric
matrix constructed of 16 290 parameters and presented the
relative magnitudes of the eigenvector components of the
four highest eigenvalues in Fig. 1. The horizontal axis repre-
sents amino acids and their nine local environments in order
of �-buried, �-medium, �-exposed, �-buried, �-medium,
�-exposed, other-buried, other-medium, and other-exposed.
The first �largest� eigenvalue shows a behavior of period
three for �C, F, L, V, I� and �E, K, Q, R�; namely, the first
eigenvector mostly represents the hydrophobicity or the hy-
drophilicity of the amino acids. The first eigenvector also
gave some specific features of the amino acids, such that
Valine �V� has a strong propensity for buried �-strand, Ala-
nine �A� has a strong propensity for �-helix, and Glycine �G�
and Proline �P� have a strong propensity for other structures.
Also the same behavior of period 3 is seen for the hydro-
philic amino acids �N, T, S, R, Q, D, K, E� in the eigenvector
of the second largest eigenvalue. However, the eigenvectors
of the third and the fourth largest eigenvalues show a behav-
ior of period nine for hydrophilic and hydrophobic amino
acids, respectively, which means that, in the third and the
fourth eigenvectors, the information for the secondary struc-
tures is inherited. A singular value decomposition analysis of
this �180

180 matrix yielded information similar to that observed
here. The detaild biological interpretations for these 16 290
parameters by both the self-organizing map �SOM� method
and singular value decomposition �SVD� analysis will be
presented elsewhere soon.

V. THERMODYNAMIC STABILITIES OF MESOPHILIC
AND THERMOPHILIC E.coli RNase H PROTEINS

We applied our pairwise energy parameters to evaluate the
changes in the thermodynamic stabilities of several E.coli
RNase H proteins, and compared the results with those of the
experiment �23�. RNase H �1RDD� consists of 155 amino
acids and has five helices and five strands. It is known as a
mesophilic protein, but the point mutations H62P�1RBR�,
V74L�1LAV�, K95G�1RBT�, V74I�1LAW�, and
K95N�1RBU� can convert it to a thermophilic protein, which
is more stable than the wild type. Since our energy param-
eters could stabilize Ptrain

1006 completely and could recognize
more than 96% of Ptest

382, they should also be able to pick up
the thermodynamic changes of RNase H protein due to mu-
tations. For each RNase H mutant, we treated the set of de-
coys given by threading the sequence onto Ptrain

1006 as the en-
semble of excited states required to establish an approximate
partition function,

Z�s� = �
���

e−H�s,��/T, �4�

where the sum represents the conformational space ��� of
decoys and T is a temperature with an arbitrary unit. The
probability to find a sequence s in a structure � is given by

P��s� = exp�− H�s,��/T�
 �
����

exp�− H�s,���/T� �5�

and the unfolded fraction becomes

PUF = 1 − exp�− H�s,�̄�/T�
 �
����

exp�− H�s,���/T� ,

�6�

where �̄ is the native-state structure for a sequence s. One
can evaluate the fluctuation in the energy of a protein as T
varies, namely the specific heat

FIG. 1. Relative amplitudes of eigenvector components for the four largest eigenvalues of �180
180 matrix. “1st” represents the largest

eigenvalue, “2nd” the second largest value, and so on.
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C =
1

T2 ��H2� − �H�2� , �7�

where �¯� denotes the average over the conformational
space of decoys.

We calculated PUF and C for wild and mutant RNase H
using our global pairwise energy function. Figures 2�a� and
2�b� show PUF and C from our calculation. The temperature
at which C is the maximum, which is a probe for the folding
transition temperature, is lower for wild RNase H than for
mutant RNase H, which shows that the thermostability of
mutants is enhanced, agreeing well with the experiment �23�.
Our approach provides a simple and fast way to probe the
thermodynamic change due to mutations in proteins and can
be applied to prescreen many mutants for drug targets.

We also employed other energy functions in calculating
the specific heat in order to check the effect of mutations on
the changes in thermodynamic stabilities. The first energy
function we used was Go-potential �24� and the second en-
ergy function was �60

60 we calculated by the perceptron learn-
ing employing the hydrophobicity of amino acids. It showed
that the folding transition temperatures of two mutants
�V74I, K95N� when using Go-potential �24� and of a mutant
�K95G� when using the second function were lower than that
of the wild type, which did not agree with the experimental
results. This test demonstrated that the results achieved from
using our energy parameters, possessing the essential envi-
ronmental information of amino acids, described better the
thermodynamic behavior of RNase H than what can be ob-
tained from other energy functions.

VI. SUMMARY

Within the context of employing decoys from a gapless
threading in this study, we have sought the systematic im-
provement of a global pairwise contact energy function as
we extended the parameter space of amino acids, incorporat-
ing local environments of amino acids, beyond a 20�20
matrix. We have studied the pairwise contact energy func-
tions of �20

20, �60
60, and �180

180 matrices according to the extent of
parameter space, and compared their effect on the learnabil-
ity of energy parameters in the context of a gapless thread-
ing, bearing in mind that a 20�20 pairwise contact matrix
has been shown to be too simple to recognize the native folds
of proteins. We showed that the construction of a global pair-
wise energy function was achieved using Ptrain

1006 of a homol-
ogy of less than 30%, which included all representatives of
different protein classes. After parametrizing the local envi-
ronments of the amino acids into nine categories depending
on three secondary structures and three kinds of hydropho-
bicity �desolvation�, the 16 290 pairwise contact energies
�scores� of the amino acids could be determined by percep-
tron learning and protein threading. These could simulta-
neously recognize all the native folds of Ptrain

1006. When subject
to a stringent threading test for Ptest

382, more than 96% of these
could recognize their native folds. We showed a systematic
improvement of protein energy functions as we extended the
parameter space of energy parameters from a 20�9 one-
body matrix to 20�20, 60�60, and 180�180 pairwise con-
tact matrices. Our work can be regarded as an intermediate
step towards constructing better protein potentials starting
from a simple contact potential. We hope that this work will
stimulate the construction of the 60�60 or the 180�180
pairwise contact energy parameters, especially with respect
to the nativelike decoys of true low energies, which then
could render conclusive evidence for the success of recog-
nizing the native folds of the 1006 training proteins simulta-
neously, although this was not feasible for the 20�20 pair-
wise contact energy parameters. We set up a simple
thermodynamic framework in the conformational space of
decoys to calculate the unfolded fraction and the specific
heat of real proteins. The different thermodynamic stabilities
of E.coli RNase H and its mutants were well described in our
calculation, agreeing with the experiment.
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FIG. 2. The unfolded fraction �a� and the specific heat �b� of
RNase H proteins as a function of temperature. It shows that the
folding transition temperature of a wild RNase H is lower than
those of five mutants of RNase H, agreeing with the experiment
�23� that a wild RNase H is converted to the thermophilic protein by
the point mutations.
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